Plasmodium falciparum antigenic variation: relationships between widespread endothelial activation, parasite PfEMP1 expression and severe malaria
نویسندگان
چکیده
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1(PfEMP1) is a family of variant surface antigens (VSA) that mediate the adhesion of parasite infected erythrocytes to capillary endothelial cells within host tissues. Opinion is divided over the role of PfEMP1 in the widespread endothelial activation associated with severe malaria. In a previous study we found evidence for differential associations between defined VSA subsets and specific syndromes of severe malaria: group A-like PfEMP1 expression and the "rosetting" phenotype were associated with impaired consciousness and respiratory distress, respectively. This study explores the involvement of widespread endothelial activation in these associations. METHODS We used plasma angiopoietin-2 as a marker of widespread endothelial activation. Using logistic regression analysis, we explored the relationships between plasma angiopoietin-2 levels, parasite VSA expression and the two syndromes of severe malaria, impaired consciousness and respiratory distress. RESULTS Plasma angiopoietin-2 was associated with both syndromes. The rosetting phenotype did not show an independent association with respiratory distress when adjusted for angiopoietin-2, consistent with a single pathogenic mechanism involving widespread endothelial activation. In contrast, group A-like PfEMP1 expression and angiopoietin-2 maintained independent associations with impaired consciousness when adjusted for each other. CONCLUSION The results are consistent with multiple pathogenic mechanisms leading to severe malaria and heterogeneity in the pathophysiology of impaired consciousness. The observed association between group A-like PfEMP1 and impaired consciousness does not appear to involve widespread endothelial activation.
منابع مشابه
Epigenetic dysregulation of virulence gene expression in severe Plasmodium falciparum malaria.
Chronic infections with the human malaria parasite Plasmodium falciparum depend on antigenic variation. P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major erythrocyte surface antigen mediating parasite sequestration in the microvasculature, is encoded in parasites by a highly diverse family of var genes. Antigenic switching is mediated by clonal variation in var expression, and re...
متن کاملMolecular aspects of severe malaria.
Human infections with Plasmodium falciparum may result in severe forms of malaria. The widespread and rapid development of drug resistance in P. falciparum and the resistance of the disease-transmitting mosquitoes to insecticides make it urgent to understand the molecular background of the pathogenesis of malaria to enable the development of novel approaches to combat the disease. This review f...
متن کاملSurface Co-Expression of Two Different PfEMP1 Antigens on Single Plasmodium falciparum-Infected Erythrocytes Facilitates Binding to ICAM1 and PECAM1
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, ...
متن کاملGlobal selection of Plasmodium falciparum virulence antigen expression by host antibodies
Parasite proteins called PfEMP1 that are inserted on the surface of infected erythrocytes, play a key role in the severe pathology associated with infection by the Plasmodium falciparum malaria parasite. These proteins mediate binding of infected cells to the endothelial lining of blood vessels as a strategy to avoid clearance by the spleen and are major targets of naturally acquired immunity. ...
متن کامل3D7-Derived Plasmodium falciparum erythrocyte membrane protein 1 is a frequent target of naturally acquired antibodies recognizing protein domains in a particular pattern independent of malaria transmission intensity.
Protection against Plasmodium falciparum malaria is largely mediated by IgG against surface Ags such as the erythrocyte membrane protein 1 family (PfEMP1) responsible for antigenic variation and sequestration of infected erythrocytes. PfEMP1 molecules can be divided into groups A, B/A, B, C, and B/C. We have previously suggested that expression of groups A and B/A PfEMP1 is associated with seve...
متن کامل